推广 热搜: 京东  联通  iphone11  摄像头  企业存储  iPhone  XSKY  京东智能采购  网络安全  自动驾驶 

自然语言处理库―Snownlp

   日期:2021-05-14     来源:51cto    作者:itcg    浏览:361    我要评论    
导读: 上次在跟大家分享用Python在本地进行文本情感分析的时候,给大家介�

 上次在跟大家分享用Python在本地进行文本情感分析的时候,给大家介绍了一个Snownlp库,当时只跟大家介绍了一下它的情感分析功能,这次来跟大家详细的介绍一下它其它的强大的功能。

01定义和安装

我们先来看看官方对它的介绍:

SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode。

它的安装命令如下:

pip install snownlp  02功能介绍

它主要有九个功能,我们分别来给大家介绍一下这九个功能都是干什么的。

01分词功能

SnowNLP的分词功能,可以将文本内容对照着字典划分一个个词语字符串,如果不是词语的就单独成为一个字符串。代码如下:

a = SnowNLP('我非常的热爱学习!') print(a.words) 

政府采购

02词性标注

SnowNLP的词性标注功能,可以对各个词语进行标注,让我们能够知道这个词语属于名词还是动词,或者其它词性。代码如下:

a = SnowNLP('我非常的热爱学习!') for i in a.tags:    print(i) 

政府采购

03情感分析

在之前的文章我们已经详细的介绍过了SnowNLP的情感分析功能,这里就不在过多介绍,用兴趣的小伙伴,可以看看这篇文章两种文本情感分析方式,你更pick哪一种?。

04拼音标注

SnowNLP的拼音标准功能,可以给文本中所有文字进行拼音标注,这样以后再也不担心遇到生僻字不会读啦~~ 代码如下:

a = SnowNLP('我非常的热爱学习!') print(a.pinyin) 

政府采购

05提取关键字和摘要

SnowNLP可以将文本中出现的关键字和文本摘要给提取出来,从而让我们可以更快速的了解文本讲述的内容。代码如下:

text = '''计算机网络系统就是利用通信设备和线路将地理位置不同、功能独立的多个计算机系统互联起来,以功能完善的网络软件实现网络中资源共享和信息传递的系统。 通过计算机的互联,实现计算机之间的通信,从而实现计算机系统之间的信息、软件和设备资源的共享以及协同工作等功能, 其本质特征在于提供计算机之间的各类资源的高度共享,实现便捷地交流信息和交换思想。''' b=SnowNLP(text) key_word = b.keywords(5)   #()中的数字,代表提取关键字数量 abs_word = b.summary(1)    #()中的数字,代表提取摘要数量 print(key_word) print(abs_word) 

政府采购

06计算词频和逆文档频率

关键字的先后顺序是由TF-IDF值的大小来决定的,其中TF就是词频、IDF就是逆文档频率、词频很好理解就是一个词在文本中出现的频率,逆文档频率是在词频的基础上,给每个词分配一个“重要性”的权重,越常见的词分配的权重越低,越稀少的词,权重越高,这个权重就成为逆文档频率,它的大小和词语的常见性成反比。代码如下:

c = SnowNLP([['计算机'], ['资源'], ['ϵͳ'], ['信息'], ['功能']]) print(c.tf) print(c.idf) 

政府采购

07繁体转简体

个人感觉这个技能较为冷门,现在基本上都是简体字了。(仅为个人意见,不喜勿喷。)代码如下:

d = SnowNLP() print(d.han) 

政府采购

08断句功能

SnowNLP可以按照","和“。”对文本进行断句处理。代码如下:

b=SnowNLP(text) print(b.sentences) 

政府采购

09文本相似度

e = SnowNLP([['计算机','资源'],             ['ϵͳ'],             ['信息','功能']             ]) print(e.sim(['ϵͳ'])) print(e.sim(['计算机'])) print(e.sim(['功能'])) 

政府采购

 
反对 0举报 0 收藏 0 打赏 0评论 0
 
更多>同类资讯
0相关评论

头条阅读
推荐图文
相关资讯
网站首页  |  物流配送  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  RSS订阅  |  违规举报  |  京ICP备14047533号-2
Processed in 0.246 second(s), 11 queries, Memory 1.49 M